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Disclaimer

These slides are designed exclusively for students attending section 1,
2 and 3 for the course 640:244 in Fall 2013. The author is not
responsible for consequences of other usages.

These slides may suffer from errors. Please use them with your own
discretion since debugging is beyond the author’s ability.
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First Order Linear ODEs

Standard form

y ′(t) + p(t)y(t) = g(t)

Integrating factor
µ(t) = e

R
p(t)dt

General solution

y(t) =

∫
µ(t)g(t)

µ(t)
.

Please find examples in older slides. Also make sure you learn how to
check your answers.
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Separable ODEs

How it looks like
dy

dx
= M(x)N(y).

Organize it as
dy

N(x)
= M(x)dx

and then integrate.

Please find examples in older slides.
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Exact ODEs and those can-be-made-exact ODEs

An ODE

M(x , y) + N(x , y)y ′ = 0

is called exact if
My = Nx

Generally if there are two functions M(x , y) and N(x , y) such that
My = Nx , then there exists a function Ψ(x , y) such that

Ψx(x , y) = M(x , y),Ψy (x , y) = N(x , y).

So if the ODE above is exact, then one can express its implicit
solution as

Ψ(x , y(x)) = C .

So it suffices to recover the Ψ(x , y) from M(x , y) and N(x , y).
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Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y),

by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y , one can
determine ϕ′(y) and thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x ,

one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y , one can
determine ϕ′(y) and thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y , one can
determine ϕ′(y) and thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y),

by taking partial derivative to y , one can
determine ϕ′(y) and thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y ,

one can
determine ϕ′(y) and thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y , one can
determine ϕ′(y) and

thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y , one can
determine ϕ′(y) and thus ϕ(y).

Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y , one can
determine ϕ′(y) and thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y , one can
determine ϕ′(y) and thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y),

the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y , one can
determine ϕ′(y) and thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

Since Ψx(x , y) = M(x , y), by integrating with respect to x , one has

Ψ(x , y) =

∫
M(x , y)dx + ϕ(y),

Since Ψy (x , y) = N(x , y), by taking partial derivative to y , one can
determine ϕ′(y) and thus ϕ(y). Note that you don’t have to care
about the constant when you integrate ϕ′(y).

Then with the so obtained Ψ(x , y), the solution to the exact ODE
would be

Ψ(x , y) = C

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 6 / 13



Exact ODEs and those can-be-made-exact ODEs

In case
My − Nx

N
is independent of y ,

you can solve the following ODE

µ′(x)

µ(x)
=

My − Nx

N

to get a factor µ(x).

Multiply µ(x) to your original ODE, you will get a new ODE that is
exact.

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 7 / 13



Exact ODEs and those can-be-made-exact ODEs

In case
My − Nx

N
is independent of y ,

you can solve the following ODE

µ′(x)

µ(x)
=

My − Nx

N

to get a factor µ(x).

Multiply µ(x) to your original ODE, you will get a new ODE that is
exact.

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 7 / 13



Exact ODEs and those can-be-made-exact ODEs

In case
My − Nx

N
is independent of y ,

you can solve the following ODE

µ′(x)

µ(x)
=

My − Nx

N

to get a factor µ(x).

Multiply µ(x) to your original ODE, you will get a new ODE that is
exact.

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 7 / 13



Exact ODEs and those can-be-made-exact ODEs

In case
My − Nx

N
is independent of y ,

you can solve the following ODE

µ′(x)

µ(x)
=

My − Nx

N

to get a factor µ(x).

Multiply µ(x) to your original ODE, you will get a new ODE that is
exact.

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 7 / 13



Exact ODEs and those can-be-made-exact ODEs

In case
My − Nx

N
is independent of y ,

you can solve the following ODE

µ′(x)

µ(x)
=

My − Nx

N

to get a factor µ(x).

Multiply µ(x) to your original ODE,

you will get a new ODE that is
exact.

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 7 / 13



Exact ODEs and those can-be-made-exact ODEs

In case
My − Nx

N
is independent of y ,

you can solve the following ODE

µ′(x)

µ(x)
=

My − Nx

N

to get a factor µ(x).

Multiply µ(x) to your original ODE, you will get a new ODE

that is
exact.

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 7 / 13



Exact ODEs and those can-be-made-exact ODEs

In case
My − Nx

N
is independent of y ,

you can solve the following ODE

µ′(x)

µ(x)
=

My − Nx

N

to get a factor µ(x).

Multiply µ(x) to your original ODE, you will get a new ODE that is
exact.

Fei Qi (Rutgers University) Recitation 6: Review March 5, 2014 7 / 13
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2nd-order Linear Homogeneous ODE: Constant Coefficient

How it looks like,

ay ′′ + by ′ + cy = 0, a, b, c real numbers

Characteristic equation

ar2 + br + c = 0.

Denote by r1, r2 the two roots.
If r1 6= r2 and both are real, then the general solution is

y(t) = C1e
r1t + C2e

r2t .

If r1 6= r2 and both are complex, write r1 = λ+ iµ, r2 = λ− iµ, then
the general solution is

y(t) = eλt(C1 cosµt + C2 sinµt).

If r1 = r2 = r (must be real), then the general solution is

y(t) = C1e
rt + C2te

rt .
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2nd-order Linear Homogeneous ODE: General Theory

Standard form

y ′′(t) + p(t)y ′(t) + q(t)y(t) = 0

Principle of superposition: If functions y1(t), y2(t) are solutions to
this ODE, then for any number A,B,

Ay1(t) + By2(t)

is a solution.
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2nd-order Linear Homogeneous ODE: General Theory

In addition,

if the Wronskian

W (y1(t), y2(t)) = y1(t)y ′
2(t)− y2(t)y ′

1(t),

as a function of t, is not constantly 0, then ALL THE SOLUTIONS of
this ODE looks like

Ay1(t) + By2(t)

for some number A,B.

In other words, y1(t), y2(t) are linearly independent to each other and
forms a fundamental set of solutions. The general solution of this
ODE would then be

y(t) = C1y1(t) + C2y2(t).
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Reduction of order

Standard form

y ′′(t) + p(t)y ′(t) + q(t)y(t) = 0

Therefore, in order to solve this equation, all you need to know is two
linear independent solutions y1(t) and y2(t).

In particular, if you already know one solution y1(t), it suffices to use
reduction of order to find another y2(t).

Let y2(t) = v(t)y1(t) and plug it into the ODE, from the argument
on Page 171 of the book, you will get

y1(t)v ′′(t) + (2y ′
1(t) + p(t)y1(t))v ′(t) = 0.

Treating it as an ODE concerning v ′(t), you can solve it by separation
of variable. (Note that v ′′(t)/v ′(t) = (ln(v ′(t))′)

Then you get v ′(t) and by integration you get v(t) and thus
y2(t) = v(t)y1(t) and thus the general solution
y(t) = C1y1(t) + C2y2(t).
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