What I have talked in Recitation 6: Review of what you have learned so far

Fei Qi

Rutgers University
fq15@math.rutgers.edu

March 5, 2014

Disclaimer

- These slides are designed exclusively for students attending section 1 , 2 and 3 for the course 640:244 in Fall 2013. The author is not responsible for consequences of other usages.
- These slides may suffer from errors. Please use them with your own discretion since debugging is beyond the author's ability.

First Order Linear ODEs

- Standard form

First Order Linear ODEs

- Standard form

$$
y^{\prime}(t)+p(t) y(t)=g(t)
$$

First Order Linear ODEs

- Standard form

$$
y^{\prime}(t)+p(t) y(t)=g(t)
$$

- Integrating factor

First Order Linear ODEs

- Standard form

$$
y^{\prime}(t)+p(t) y(t)=g(t)
$$

- Integrating factor

$$
\mu(t)=e^{\int p(t) d t}
$$

First Order Linear ODEs

- Standard form

$$
y^{\prime}(t)+p(t) y(t)=g(t)
$$

- Integrating factor

$$
\mu(t)=e^{\int p(t) d t}
$$

- General solution

First Order Linear ODEs

- Standard form

$$
y^{\prime}(t)+p(t) y(t)=g(t)
$$

- Integrating factor

$$
\mu(t)=e^{\int p(t) d t}
$$

- General solution

$$
y(t)=\frac{\int \mu(t) g(t)}{\mu(t)}
$$

First Order Linear ODEs

- Standard form

$$
y^{\prime}(t)+p(t) y(t)=g(t)
$$

- Integrating factor

$$
\mu(t)=e^{\int p(t) d t}
$$

- General solution

$$
y(t)=\frac{\int \mu(t) g(t)}{\mu(t)}
$$

- Please find examples in older slides.

First Order Linear ODEs

- Standard form

$$
y^{\prime}(t)+p(t) y(t)=g(t)
$$

- Integrating factor

$$
\mu(t)=e^{\int p(t) d t}
$$

- General solution

$$
y(t)=\frac{\int \mu(t) g(t)}{\mu(t)}
$$

- Please find examples in older slides. Also make sure you learn how to check your answers.

Separable ODEs

- How it looks like

$$
\frac{d y}{d x}=M(x) N(y)
$$

Separable ODEs

- How it looks like

$$
\frac{d y}{d x}=M(x) N(y)
$$

- Organize it as

$$
\frac{d y}{N(x)}=M(x) d x
$$

Separable ODEs

- How it looks like

$$
\frac{d y}{d x}=M(x) N(y)
$$

- Organize it as

$$
\frac{d y}{N(x)}=M(x) d x
$$

and then integrate.

Separable ODEs

- How it looks like

$$
\frac{d y}{d x}=M(x) N(y)
$$

- Organize it as

$$
\frac{d y}{N(x)}=M(x) d x
$$

and then integrate.

- Please find examples in older slides.

Exact ODEs and those can-be-made-exact ODEs

- An ODE

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
M_{y}=N_{x}
$$

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
M_{y}=N_{x}
$$

- Generally if there are two functions $M(x, y)$ and $N(x, y)$ such that $M_{y}=N_{x}$,

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
M_{y}=N_{x}
$$

- Generally if there are two functions $M(x, y)$ and $N(x, y)$ such that $M_{y}=N_{x}$, then there exists a function $\Psi(x, y)$

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
M_{y}=N_{x}
$$

- Generally if there are two functions $M(x, y)$ and $N(x, y)$ such that $M_{y}=N_{x}$, then there exists a function $\Psi(x, y)$ such that

$$
\Psi_{x}(x, y)=M(x, y)
$$

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
M_{y}=N_{x}
$$

- Generally if there are two functions $M(x, y)$ and $N(x, y)$ such that $M_{y}=N_{x}$, then there exists a function $\Psi(x, y)$ such that

$$
\Psi_{x}(x, y)=M(x, y), \Psi_{y}(x, y)=N(x, y) .
$$

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
M_{y}=N_{x}
$$

- Generally if there are two functions $M(x, y)$ and $N(x, y)$ such that $M_{y}=N_{x}$, then there exists a function $\Psi(x, y)$ such that

$$
\Psi_{x}(x, y)=M(x, y), \Psi_{y}(x, y)=N(x, y)
$$

- So if the ODE above is exact,

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
M_{y}=N_{x}
$$

- Generally if there are two functions $M(x, y)$ and $N(x, y)$ such that $M_{y}=N_{x}$, then there exists a function $\Psi(x, y)$ such that

$$
\Psi_{x}(x, y)=M(x, y), \Psi_{y}(x, y)=N(x, y)
$$

- So if the ODE above is exact, then one can express its implicit solution as

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
M_{y}=N_{x}
$$

- Generally if there are two functions $M(x, y)$ and $N(x, y)$ such that $M_{y}=N_{x}$, then there exists a function $\Psi(x, y)$ such that

$$
\Psi_{x}(x, y)=M(x, y), \Psi_{y}(x, y)=N(x, y)
$$

- So if the ODE above is exact, then one can express its implicit solution as

$$
\Psi(x, y(x))=C
$$

Exact ODEs and those can-be-made-exact ODEs

- An ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if

$$
M_{y}=N_{x}
$$

- Generally if there are two functions $M(x, y)$ and $N(x, y)$ such that $M_{y}=N_{x}$, then there exists a function $\Psi(x, y)$ such that

$$
\Psi_{x}(x, y)=M(x, y), \Psi_{y}(x, y)=N(x, y)
$$

- So if the ODE above is exact, then one can express its implicit solution as

$$
\Psi(x, y(x))=C
$$

So it suffices to recover the $\Psi(x, y)$ from $M(x, y)$ and $N(x, y)$.

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$,

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x,

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x, one has

$$
\Psi(x, y)=\int M(x, y) d x+\varphi(y)
$$

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x, one has

$$
\Psi(x, y)=\int M(x, y) d x+\varphi(y)
$$

- Since $\Psi_{y}(x, y)=N(x, y)$,

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x, one has

$$
\Psi(x, y)=\int M(x, y) d x+\varphi(y)
$$

- Since $\Psi_{y}(x, y)=N(x, y)$, by taking partial derivative to y,

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x, one has

$$
\Psi(x, y)=\int M(x, y) d x+\varphi(y)
$$

- Since $\Psi_{y}(x, y)=N(x, y)$, by taking partial derivative to y, one can determine $\varphi^{\prime}(y)$ and

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x, one has

$$
\Psi(x, y)=\int M(x, y) d x+\varphi(y)
$$

- Since $\Psi_{y}(x, y)=N(x, y)$, by taking partial derivative to y, one can determine $\varphi^{\prime}(y)$ and thus $\varphi(y)$.

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x, one has

$$
\Psi(x, y)=\int M(x, y) d x+\varphi(y)
$$

- Since $\Psi_{y}(x, y)=N(x, y)$, by taking partial derivative to y, one can determine $\varphi^{\prime}(y)$ and thus $\varphi(y)$. Note that you don't have to care about the constant when you integrate $\varphi^{\prime}(y)$.

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x, one has

$$
\Psi(x, y)=\int M(x, y) d x+\varphi(y)
$$

- Since $\Psi_{y}(x, y)=N(x, y)$, by taking partial derivative to y, one can determine $\varphi^{\prime}(y)$ and thus $\varphi(y)$. Note that you don't have to care about the constant when you integrate $\varphi^{\prime}(y)$.
- Then with the so obtained $\Psi(x, y)$,

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x, one has

$$
\Psi(x, y)=\int M(x, y) d x+\varphi(y)
$$

- Since $\Psi_{y}(x, y)=N(x, y)$, by taking partial derivative to y, one can determine $\varphi^{\prime}(y)$ and thus $\varphi(y)$. Note that you don't have to care about the constant when you integrate $\varphi^{\prime}(y)$.
- Then with the so obtained $\Psi(x, y)$, the solution to the exact ODE would be

Exact ODEs and those can-be-made-exact ODEs

- Since $\Psi_{x}(x, y)=M(x, y)$, by integrating with respect to x, one has

$$
\Psi(x, y)=\int M(x, y) d x+\varphi(y)
$$

- Since $\Psi_{y}(x, y)=N(x, y)$, by taking partial derivative to y, one can determine $\varphi^{\prime}(y)$ and thus $\varphi(y)$. Note that you don't have to care about the constant when you integrate $\varphi^{\prime}(y)$.
- Then with the so obtained $\Psi(x, y)$, the solution to the exact ODE would be

$$
\Psi(x, y)=C
$$

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
\frac{M_{y}-N_{x}}{N} \text { is independent of } y,
$$

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
\frac{M_{y}-N_{x}}{N} \text { is independent of } y,
$$

you can solve the following ODE

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
\frac{M_{y}-N_{x}}{N} \text { is independent of } y,
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=\frac{M_{y}-N_{x}}{N}
$$

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
\frac{M_{y}-N_{x}}{N} \text { is independent of } y,
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=\frac{M_{y}-N_{x}}{N}
$$

to get a factor $\mu(x)$.

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
\frac{M_{y}-N_{x}}{N} \text { is independent of } y
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=\frac{M_{y}-N_{x}}{N}
$$

to get a factor $\mu(x)$.

- Multiply $\mu(x)$ to your original ODE,

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
\frac{M_{y}-N_{x}}{N} \text { is independent of } y
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=\frac{M_{y}-N_{x}}{N}
$$

to get a factor $\mu(x)$.

- Multiply $\mu(x)$ to your original ODE, you will get a new ODE

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
\frac{M_{y}-N_{x}}{N} \text { is independent of } y
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=\frac{M_{y}-N_{x}}{N}
$$

to get a factor $\mu(x)$.

- Multiply $\mu(x)$ to your original ODE, you will get a new ODE that is exact.

Exact ODEs and those can-be-made-exact ODEs

- In case
$-\frac{M_{y}-N_{x}}{M}$ is independent of x,

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
-\frac{M_{y}-N_{x}}{M} \text { is independent of } x,
$$

you can solve the following ODE

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
-\frac{M_{y}-N_{x}}{M} \text { is independent of } x
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(y)}{\mu(y)}=\frac{M_{y}-N_{x}}{N}
$$

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
-\frac{M_{y}-N_{x}}{M} \text { is independent of } x
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(y)}{\mu(y)}=\frac{M_{y}-N_{x}}{N}
$$

to get a factor $\mu(x)$.

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
-\frac{M_{y}-N_{x}}{M} \text { is independent of } x
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(y)}{\mu(y)}=\frac{M_{y}-N_{x}}{N}
$$

to get a factor $\mu(x)$.

- Multiply $\mu(x)$ to your original ODE,

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
-\frac{M_{y}-N_{x}}{M} \text { is independent of } x
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(y)}{\mu(y)}=\frac{M_{y}-N_{x}}{N}
$$

to get a factor $\mu(x)$.

- Multiply $\mu(x)$ to your original ODE, you will get a new ODE

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
-\frac{M_{y}-N_{x}}{M} \text { is independent of } x
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(y)}{\mu(y)}=\frac{M_{y}-N_{x}}{N}
$$

to get a factor $\mu(x)$.

- Multiply $\mu(x)$ to your original ODE, you will get a new ODE that is exact.

Exact ODEs and those can-be-made-exact ODEs

- In case

$$
-\frac{M_{y}-N_{x}}{M} \text { is independent of } x
$$

you can solve the following ODE

$$
\frac{\mu^{\prime}(y)}{\mu(y)}=\frac{M_{y}-N_{x}}{N}
$$

to get a factor $\mu(x)$.

- Multiply $\mu(x)$ to your original ODE, you will get a new ODE that is exact.
- Please find example problems in earlier slides.

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0,
$$

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

Denote by r_{1}, r_{2} the two roots.

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

Denote by r_{1}, r_{2} the two roots.

- If $r_{1} \neq r_{2}$ and both are real,

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

Denote by r_{1}, r_{2} the two roots.

- If $r_{1} \neq r_{2}$ and both are real, then the general solution is

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} .
$$

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

Denote by r_{1}, r_{2} the two roots.

- If $r_{1} \neq r_{2}$ and both are real, then the general solution is

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} .
$$

- If $r_{1} \neq r_{2}$ and both are complex,

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

Denote by r_{1}, r_{2} the two roots.

- If $r_{1} \neq r_{2}$ and both are real, then the general solution is

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

- If $r_{1} \neq r_{2}$ and both are complex, write $r_{1}=\lambda+i \mu, r_{2}=\lambda-i \mu$,

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

Denote by r_{1}, r_{2} the two roots.

- If $r_{1} \neq r_{2}$ and both are real, then the general solution is

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} .
$$

- If $r_{1} \neq r_{2}$ and both are complex, write $r_{1}=\lambda+i \mu, r_{2}=\lambda-i \mu$, then the general solution is

$$
y(t)=e^{\lambda t}\left(C_{1} \cos \mu t+C_{2} \sin \mu t\right)
$$

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

Denote by r_{1}, r_{2} the two roots.

- If $r_{1} \neq r_{2}$ and both are real, then the general solution is

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} .
$$

- If $r_{1} \neq r_{2}$ and both are complex, write $r_{1}=\lambda+i \mu, r_{2}=\lambda-i \mu$, then the general solution is

$$
y(t)=e^{\lambda t}\left(C_{1} \cos \mu t+C_{2} \sin \mu t\right)
$$

- If $r_{1}=r_{2}=r$

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

Denote by r_{1}, r_{2} the two roots.

- If $r_{1} \neq r_{2}$ and both are real, then the general solution is

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} .
$$

- If $r_{1} \neq r_{2}$ and both are complex, write $r_{1}=\lambda+i \mu, r_{2}=\lambda-i \mu$, then the general solution is

$$
y(t)=e^{\lambda t}\left(C_{1} \cos \mu t+C_{2} \sin \mu t\right)
$$

- If $r_{1}=r_{2}=r$ (must be real),

2nd-order Linear Homogeneous ODE: Constant Coefficient

- How it looks like,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \text { real numbers }
$$

- Characteristic equation

$$
a r^{2}+b r+c=0
$$

Denote by r_{1}, r_{2} the two roots.

- If $r_{1} \neq r_{2}$ and both are real, then the general solution is

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} .
$$

- If $r_{1} \neq r_{2}$ and both are complex, write $r_{1}=\lambda+i \mu, r_{2}=\lambda-i \mu$, then the general solution is

$$
y(t)=e^{\lambda t}\left(C_{1} \cos \mu t+C_{2} \sin \mu t\right)
$$

- If $r_{1}=r_{2}=r$ (must be real), then the general solution is

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

2nd-order Linear Homogeneous ODE: General Theory

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

2nd-order Linear Homogeneous ODE: General Theory

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Principle of superposition:

2nd-order Linear Homogeneous ODE: General Theory

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Principle of superposition: If functions $y_{1}(t), y_{2}(t)$ are solutions to this ODE,

2nd-order Linear Homogeneous ODE: General Theory

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Principle of superposition: If functions $y_{1}(t), y_{2}(t)$ are solutions to this ODE, then for any number A, B,

2nd-order Linear Homogeneous ODE: General Theory

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Principle of superposition: If functions $y_{1}(t), y_{2}(t)$ are solutions to this ODE, then for any number A, B,

$$
A y_{1}(t)+B y_{2}(t)
$$

2nd-order Linear Homogeneous ODE: General Theory

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Principle of superposition: If functions $y_{1}(t), y_{2}(t)$ are solutions to this ODE, then for any number A, B,

$$
A y_{1}(t)+B y_{2}(t)
$$

is a solution.

2nd-order Linear Homogeneous ODE: General Theory

- In addition,

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t),
$$

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

as a function of t,

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

as a function of t, is not constantly 0 ,

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t),
$$

as a function of t, is not constantly 0 , then ALL THE SOLUTIONS

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t),
$$

as a function of t, is not constantly 0 , then ALL THE SOLUTIONS of this ODE looks like

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t),
$$

as a function of t, is not constantly 0 , then ALL THE SOLUTIONS of this ODE looks like

$$
A y_{1}(t)+B y_{2}(t)
$$

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t),
$$

as a function of t, is not constantly 0 , then ALL THE SOLUTIONS of this ODE looks like

$$
A y_{1}(t)+B y_{2}(t)
$$

for some number A, B.

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t),
$$

as a function of t, is not constantly 0 , then ALL THE SOLUTIONS of this ODE looks like

$$
A y_{1}(t)+B y_{2}(t)
$$

for some number A, B.

- In other words,

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t),
$$

as a function of t, is not constantly 0 , then ALL THE SOLUTIONS of this ODE looks like

$$
A y_{1}(t)+B y_{2}(t)
$$

for some number A, B.

- In other words, $y_{1}(t), y_{2}(t)$ are linearly independent to each other

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

as a function of t, is not constantly 0 , then ALL THE SOLUTIONS of this ODE looks like

$$
A y_{1}(t)+B y_{2}(t)
$$

for some number A, B.

- In other words, $y_{1}(t), y_{2}(t)$ are linearly independent to each other and forms a fundamental set of solutions.

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

as a function of t, is not constantly 0 , then ALL THE SOLUTIONS of this ODE looks like

$$
A y_{1}(t)+B y_{2}(t)
$$

for some number A, B.

- In other words, $y_{1}(t), y_{2}(t)$ are linearly independent to each other and forms a fundamental set of solutions. The general solution of this ODE

2nd-order Linear Homogeneous ODE: General Theory

- In addition, if the Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

as a function of t, is not constantly 0 , then ALL THE SOLUTIONS of this ODE looks like

$$
A y_{1}(t)+B y_{2}(t)
$$

for some number A, B.

- In other words, $y_{1}(t), y_{2}(t)$ are linearly independent to each other and forms a fundamental set of solutions. The general solution of this
ODE would then be

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation,

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$,

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$ and plug it into the ODE,

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$ and plug it into the ODE, from the argument on Page 171 of the book,

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$
y_{1}(t) v^{\prime \prime}(t)+\left(2 y_{1}^{\prime}(t)+p(t) y_{1}(t)\right) v^{\prime}(t)=0 .
$$

Treating it as an ODE concerning $v^{\prime}(t)$,

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$
y_{1}(t) v^{\prime \prime}(t)+\left(2 y_{1}^{\prime}(t)+p(t) y_{1}(t)\right) v^{\prime}(t)=0 .
$$

Treating it as an ODE concerning $v^{\prime}(t)$, you can solve it by separation of variable.

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$
y_{1}(t) v^{\prime \prime}(t)+\left(2 y_{1}^{\prime}(t)+p(t) y_{1}(t)\right) v^{\prime}(t)=0 .
$$

Treating it as an ODE concerning $v^{\prime}(t)$, you can solve it by separation of variable. (Note that $v^{\prime \prime}(t) / v^{\prime}(t)=\left(\ln \left(v^{\prime}(t)\right)^{\prime}\right)$

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$
y_{1}(t) v^{\prime \prime}(t)+\left(2 y_{1}^{\prime}(t)+p(t) y_{1}(t)\right) v^{\prime}(t)=0 .
$$

Treating it as an ODE concerning $v^{\prime}(t)$, you can solve it by separation of variable. (Note that $v^{\prime \prime}(t) / v^{\prime}(t)=\left(\ln \left(v^{\prime}(t)\right)^{\prime}\right)$

- Then you get $v^{\prime}(t)$

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$
y_{1}(t) v^{\prime \prime}(t)+\left(2 y_{1}^{\prime}(t)+p(t) y_{1}(t)\right) v^{\prime}(t)=0 .
$$

Treating it as an ODE concerning $v^{\prime}(t)$, you can solve it by separation of variable. (Note that $v^{\prime \prime}(t) / v^{\prime}(t)=\left(\ln \left(v^{\prime}(t)\right)^{\prime}\right)$

- Then you get $v^{\prime}(t)$ and by integration you get $v(t)$

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$
y_{1}(t) v^{\prime \prime}(t)+\left(2 y_{1}^{\prime}(t)+p(t) y_{1}(t)\right) v^{\prime}(t)=0 .
$$

Treating it as an ODE concerning $v^{\prime}(t)$, you can solve it by separation of variable. (Note that $v^{\prime \prime}(t) / v^{\prime}(t)=\left(\ln \left(v^{\prime}(t)\right)^{\prime}\right)$

- Then you get $v^{\prime}(t)$ and by integration you get $v(t)$ and thus

$$
y_{2}(t)=v_{(}(t) y_{1}(t)
$$

Reduction of order

- Standard form

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

- Therefore, in order to solve this equation, all you need to know is two linear independent solutions $y_{1}(t)$ and $y_{2}(t)$.
- In particular, if you already know one solution $y_{1}(t)$, it suffices to use reduction of order to find another $y_{2}(t)$.
- Let $y_{2}(t)=v(t) y_{1}(t)$ and plug it into the ODE, from the argument on Page 171 of the book, you will get

$$
y_{1}(t) v^{\prime \prime}(t)+\left(2 y_{1}^{\prime}(t)+p(t) y_{1}(t)\right) v^{\prime}(t)=0 .
$$

Treating it as an ODE concerning $v^{\prime}(t)$, you can solve it by separation of variable. (Note that $v^{\prime \prime}(t) / v^{\prime}(t)=\left(\ln \left(v^{\prime}(t)\right)^{\prime}\right)$

- Then you get $v^{\prime}(t)$ and by integration you get $v(t)$ and thus $y_{2}(t)=v_{(}(t) y_{1}(t)$ and thus the general solution $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$.

The End

